

www.ialsa.org

Big Data, Big Analysis:

A Collaborative Modeling Framework for Multi-study Replication

Andriy V. Koval *University of Victoria*

William H. Beasley
University of Oklahoma

Andrea Piccinin *University of Victoria*

Graciela Muniz-Terrera *University of Edinburgh*

Scott HoferUniversity of Victoria

www.ialsa.org

- The IALSA network (NIH/NIA 1P01AG043362) is comprised of over 100 longitudinal studies on aging, health and dementia.
 - Mix of samples aged from birth to 100 years
 - Assessed from 1921 to the present.
 - Monitoring each individual for 4 to 48 years
 - Time between assessments 6 months to 17 years
- Focus on the reproducibility of results (i.e., direction and pattern of effects) across populations, historical periods, measurements, designs, and statistical models.
- Research aim: To maintain and enhance cognitive and physical health and well-being throughout the lifespan

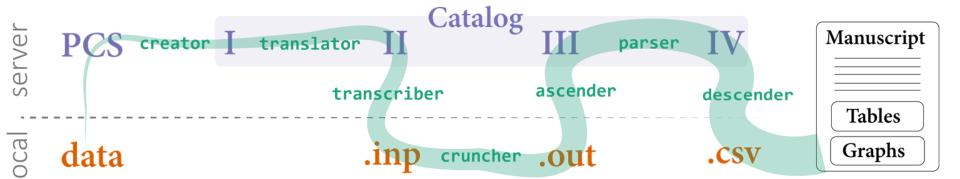
www.ialsa.org

IALSA Approach: Coordinated Analysis with Replication (CAR)

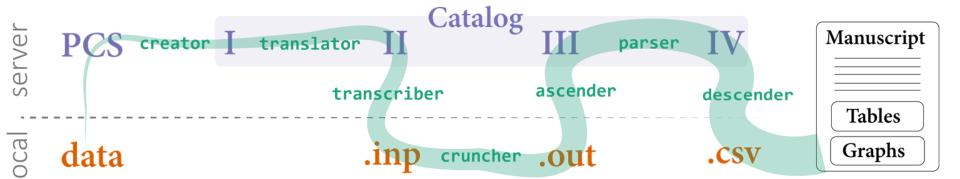
- Finds common/similar measures among studies (<u>maelstrom-research.org</u>)
- Fits same models to many longitudinal studies
- Meta-analyzes model solutions
- Aim: Maximize value from each study while providing comparable results
- Expect similar conclusions regardless of the exact variables used.
- Evaluation of sensitivity to statistical model
- Meta-Analysis / Meta-Regression

Hofer, S. M., & **Piccinin**, A. M. (2009). Integrative data analysis through coordination of measurement and analysis protocol across independent longitudinal studies. *Psychological Methods*, *14*(2), *150*.

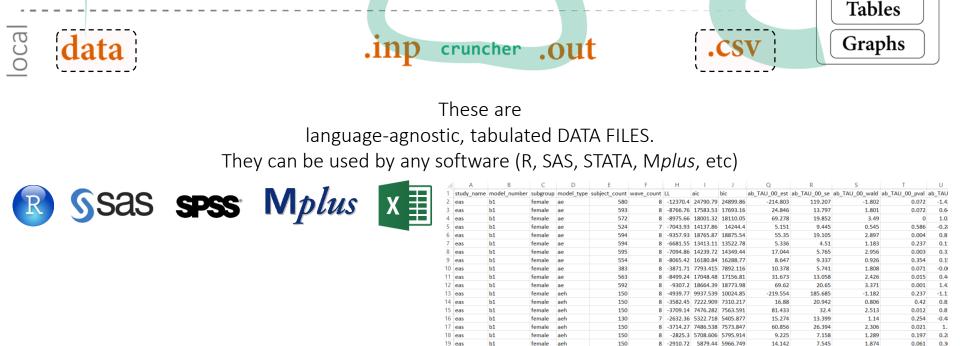
www.ialsa.org


IALSA Portland Workshop Feb 23-25, 2015 (github.com/IALSA/IALSA-2015-Portland)

- Primary aim: To examine the associations between changes in
 - physical functioning (e.g., grip strength, pulmonary function) and
 - cognitive functioning (e.g., memory, reasoning)
 - in multiple-study comparative framework.
- Research foci: To examine concurrent decline between
 - Pulmonary function Cognition
 - Grip Strength Cognition
 - Gait Cognition
 - Cognition: Within and across cognitive domains
 - Physical functioning: Across pulmonary, grip, gait
- Bivariate linear growth curve models
- Adjustment for age, sex, education, height, health behaviors and outcomes


IALSA Portland Workshop Feb 23-25, 2015 (github.com/IALSA/IALSA-2015-Portland)

Driver		Study
Andrea Zammit	EAS	Einstein Aging Study
Annie Robitaille	ELSA	English Longitudinal Study of Aging
Chenkai Wu	HRS	Health and Retirement Study
Philipp Handschul	ILSE	Interdisciplinary Longitudinal Study of Aging
<u>Lewina Lee</u>	NAS	Normative Aging Study
e <u>Valerie Jarry</u>	NuAge	Quebec Longitudinal Study on Nutrition and Aging
Marcus Praetorius	ОСТО	Octogenarian Twins
Cassandra Brown	MAP	Rush Memory and Aging Project
A <u>Deborah Finkel</u>	SATSA	Swedish Adoption Twin Study of Aging



This is the WORKFLOW MAP of the coordinated analysis.

Next,
we will show you
what each element and process
IS and DOES.

55

51

female

59

75

55

61

57

63

59

57

73

53

Catalog

transcriber

cardio_bl

0 0

0 0

0 0

172.20

169.50

parser

descender

8 -3450.76 6959.528 7046.837

18

10

33

24

27

15

19

65

61

ascender

creator translator

1 103712 2002

3 103714 2002

55

71

51

1947

1931

1950

Manuscript

0.439

23 NA

31 N/A

animals_t5

16

28

creator translator

Catalog

parser

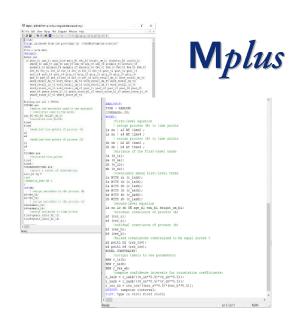
descender

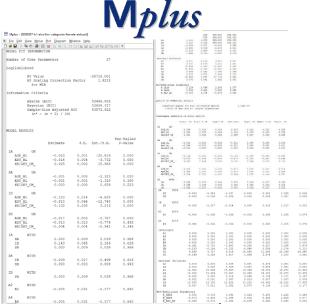
Tables

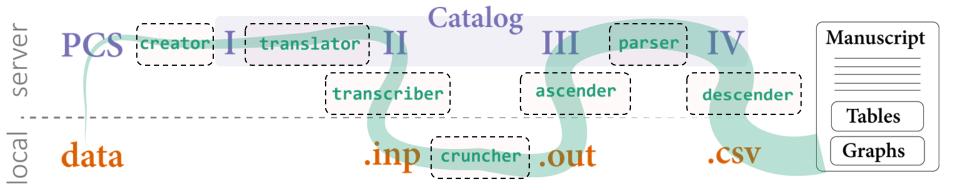
Manuscript

Graphs

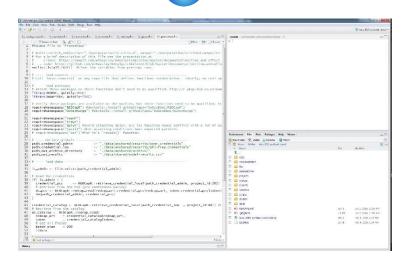
transcriber

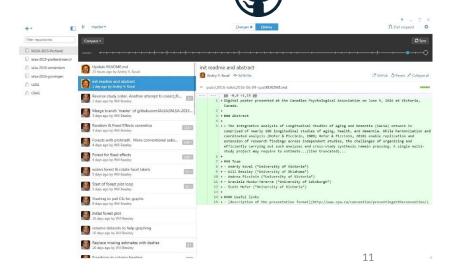

ascender

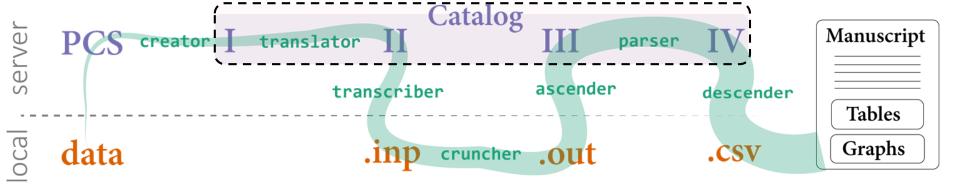

data



These are input and output files

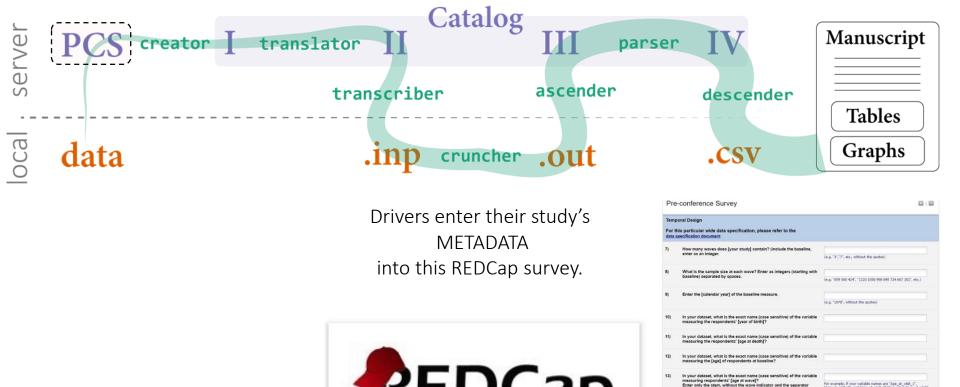

consumed and produced by Mplus.





These are **R** SCRIPTS Run in **RStudio** and coordinated in **GitHub**

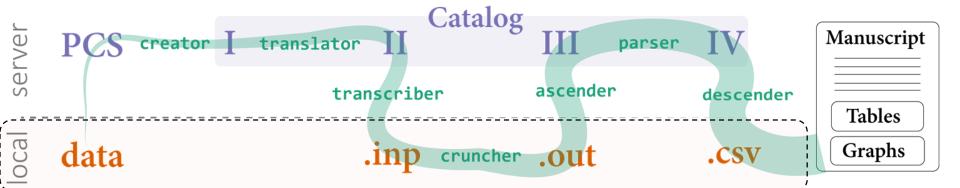
This is a


DATASET

each row = one model per study

It is stored on a REDCap server.

Harris, PA, Taylor, R, Thielke, R, Payne, R, Gonzalez, N, Conde, JG (2009). Research electronic data capture (REDCap) - A metadata-driven methodology and workflow process for providing translational research informatics support, *J Biomed Inform, 42*(2), 377-81.

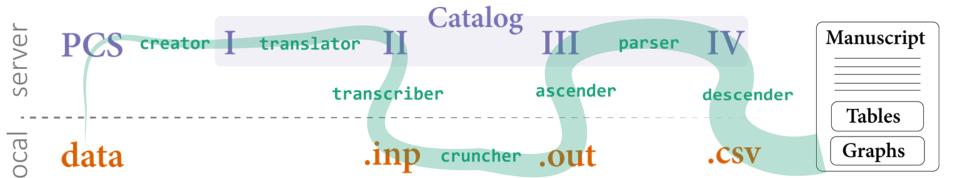

Harris, PA, Taylor, R, Thielke, R, Payne, R, Gonzalez, N, Conde, JG (2009). Research electronic data capture (REDCap) - A metadata-driven methodology and workflow process for providing translational research informatics support, *J Biomed Inform, 42*(2), 377-81.

Research Electronic Data Capture

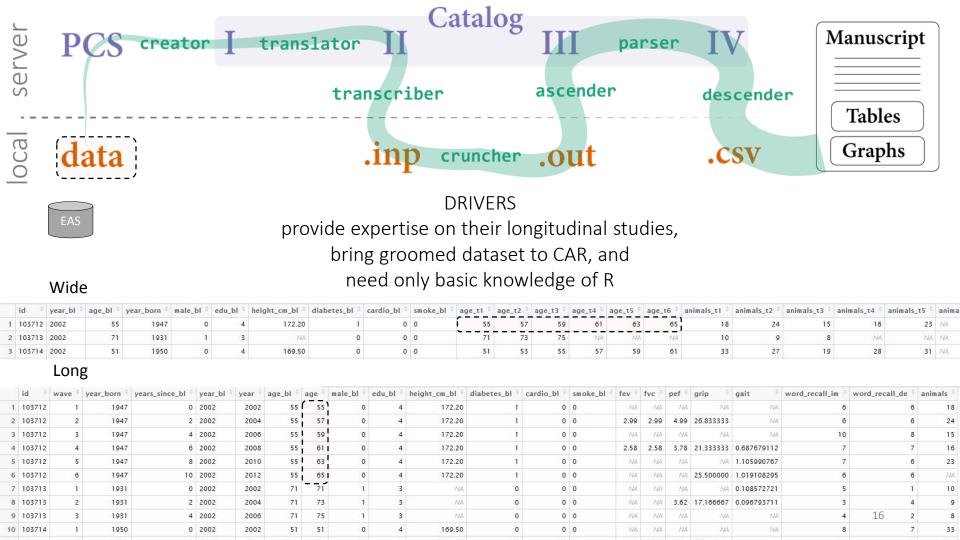
Enter each wave for which [age at wave] is available in your dataset

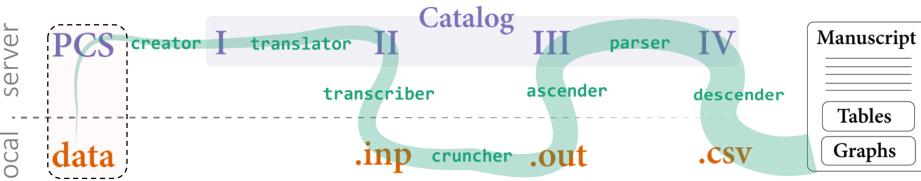
Save & Return Later

For example: "1 2 3 4 5", "2 4 6", "1 3 7", etc. (without the quotes)



This is PRIVATE space on local machines.

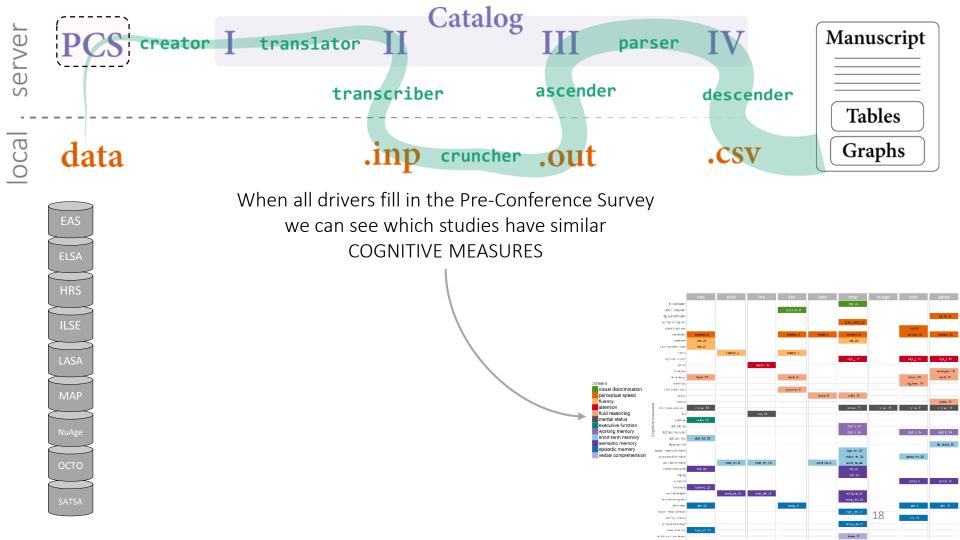

Sensitive information ALWAYS under control of the driver.


Raw data is not shared with anyone at any point.

- -> greater security
- -> less IRB paperwork

Now we will walk you through Coordinated Analysis with Replication from raw data files to tables and graphs in manuscripts.

REDCap interacts with the DRIVER to obtain relevant description of the study 's DATASET and characteristics.


Image credit: https://support.novell.com/techcenter/articles/ana19920502.html

Tem	poral Design	
	his particular wide data specification, please refer to the specification document	
7)	How many waves does [your study] contain? (include the baseline, enter as an integer.	(e.g. "F," F, etc., without the quotes)
8)	What is the sample size at each wave? Enter as integers (starting with baseline) separated by spaces.	(e.g. "659 560 424", "1120 1058 998 845 724 667 301", etc.)
9)	Enter the [calendar year] of the baseline measure.	(e.g. "1978", without the quotes)
10)	In your dataset, what is the exact name (case sensitive) of the variable measuring the respondents' [year of birth]?	
11)	In your dataset, what is the exact name (case sensitive) of the variable measuring the respondents' [age at death]?	
12)	In your dataset, what is the exact name (case sensitive) of the variable measuring the [age] of respondents at baseline?	
13)	In your dataset, what is the exact name (case sensitive) of the variable measuring respondents' [age at wave]? Enter only the stem, without the wave indicator and the separator character.	For example, if your variable names are "Age_at_visit_1", "Age_at_visit_3", and "Age_at_visit_6" then enter "Age_at_visit into the text bor (without the quotes)
14)	Enter each wave for which [age at wave] is available in your dataset using numbers separated by spaces.	For example: "1 2 3 4 5", "2 4 6", "1 3 7", etc. (without the quo

Tables

Graphs

	id ‡	year_bl ‡	age_bl ‡	year_born =	male_bl =	edu_bl ‡	height_cm_bl ‡	diabetes_bl ‡	cardio_bl =	smoke_bl =	age_t1 =	age_t2 =	age_t3 ‡	age_t4	age_t5 ÷	age_t6	animals_t1 =	animals_t2	animals_t3	animals_t4 ‡	animals_t5	anima
1	103712	2002	55	1947	0	4	172.20	1	0	0	55	57	59	61	63	65	18	24	15	16	23	N/A
2	103713	2002	71	1931	1	3	NA	0	0	0	71	73	75	NA	NA	NA	10	9	8	17	NA NA	NA A
3	103714	2002	51	1950	0	4	169.50	0	0	0	51	53	55	57	59	61	33	27	19	28	31	NA

	<i></i>			eas	elsa	hrs	ilse	lasa	map	nuage	octo	satsa
	(i		line orientation						line, 24			
(L)	DCC		picture completion				piccomp, 8					
>	PCS		figure identification									fig_id, 12
	\/		number comparison						num_comp, 23			
server			perceptual speed								psif, 8	
S			substitution	symbol, 30			symbol, 8	letter, 6	symbol, 24		symbol, 22	symbol, 18
			categories	cat, 20					cat, 25			
			f-a-s phonemic words	fas, 21								
			fluency		fluency, 2		fluency, 7					
Ø	1 4		digit span forward						digit_f, 24		digit_f, 24	digit_f, 14
loca	data		serial7			serial7, 18						
	autu		analogies									analogies, 18
			block design	block, 27			block, 8				block, 26	block, 12
		Domains	figure logic								fig_logic, 18	
		visual discrimination	IPSS spatial ability				piccomp, 8					
	EAS	perceptual speed	matrices				p,, .	raven, 6	matix, 24			
		fluency	rotations						,			rotate, 10
		attention	യ്ല് mini mental state exam	mmse, 20					mmse, 23	mmse, 18	mmse, 8	mmse, 18
	ELSA	fluid reasoning	mini mental state exam tics switching digit ordering digit span backward			tics, 18			1111100, 20	1111130, 10	minos, o	
		mental status	switching	trailsb, 29		460, 10						
	HRS	executive function	⊕ digit ordering	1141100, 20					digit_o, 24			
		working memory	digit span backward						digit_b, 24		digit_b, 24	digit_b, 14
		short-term memory	digit span total	digit_tot, 29					uigit_5, 24		digit_5, 24	digit_b, 14
	ILSE	semantic memory	figure memory	digit_tot, 25								fig_mem, 10
		episodic memory	logical memory immediate						logic_im, 23			iig_iiidiii, id
		verbal comprehension	prose recall immediate						bstory_im, 24		prose_im, 25	
	LASA		word list immediate		word_im, 8	word_im, 18		word_im, 6	word_im, 24		prose_im, 20	
			boston naming test	bnt, 20	word_im, o	word_iiii, io		word_iiii, o	bnt, 23			
	MAP		reading	biit, 20					nart, 23			
	IVIAI		-						Hait, 25		synon, 8	synon, 18
			synonyms vocabulary	waisvoc, 20							Sylioli, 8	Sylloli, 10
	NuAge		vocabulary word list delayed	waisvoc, 20	word_de, 16	word de, 36			word_de, 24			
					word_de, 16	word_de, 36						
			word list recognition	i-6- 00			and a O		word_rec, 20		1.6.0	26.40
	ОСТО		information	info, 20			waisg, 8				info, 8	info, 18
			logical memory delayed						logic_de, 24			
	CATCA		memory in reality								mir, 18	
	SATSA		prose recall delayed						bstory_de, 24			
			prose recall total	logic_tot, 19							19)
			auditory comprehension						ideas, 24			

ocal

PCS cre

creator | translator

Catalog

parser

Manuscript

transcriber

ascender

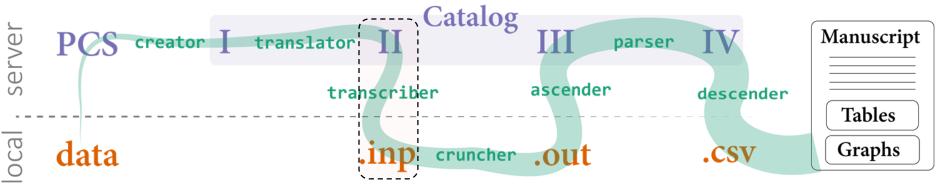
descender

Tables

data

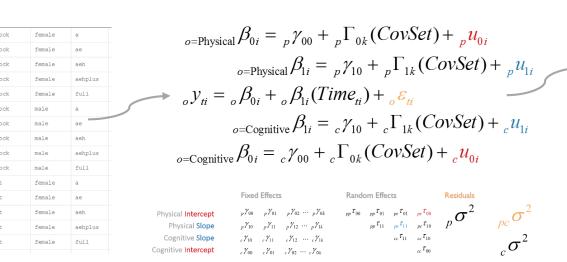
inp cruncher .out

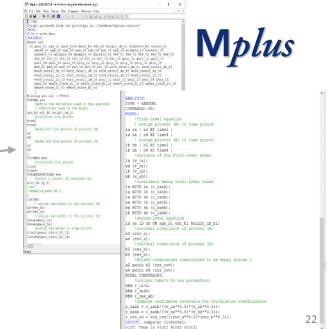
.CSV

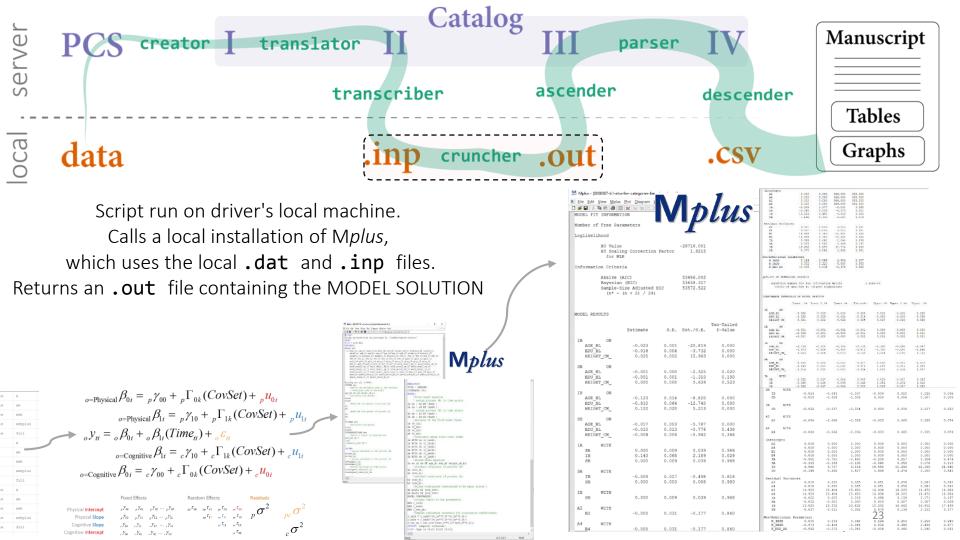

Graphs

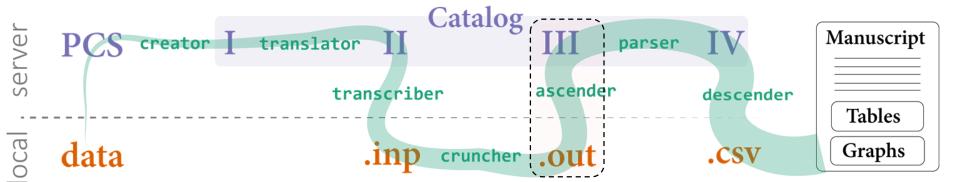
Script run on server.

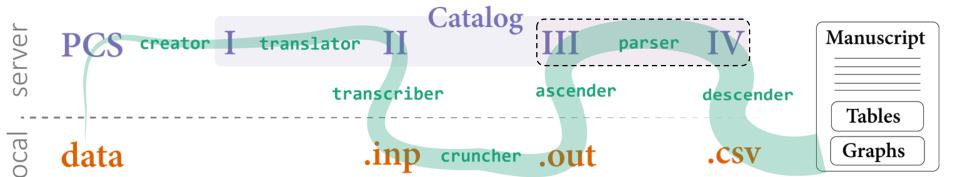
After drivers enter responses into PCS,
the CREATOR populates/writes
PART I of the Catalog.


1	eas	gait	block	female	a
2	eas	gait	block	female	ae
3	eas	gait	block	female	aeh
4	eas	gait	block	female	aehplus
5	eas	gait	block	female	full
6	eas	gait	block	male	a
7	eas	gait	block	male	ae
8	eas	gait	block	male	aeh
9	eas	gait	block	male	aehplus
10	eas	gait	block	male	full
11	eas	gait	bnt	female	a
12	eas	gait	bnt	female	ae
13	eas	gait	bnt	female	aeh
14	eas	gait	bnt	female	aehplus
15	eas	gait	bnt	female	full



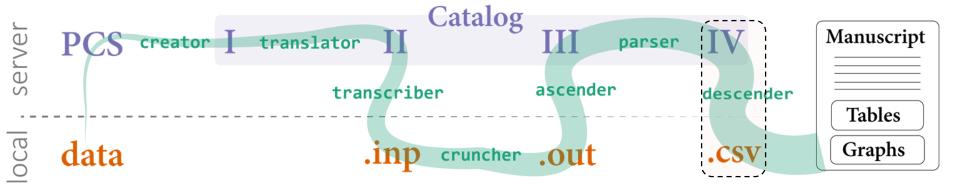

Script run on driver's local machine.


TRANSCRIBER takes model syntax from Part II,
and saves it as an .inp file on the driver's local machine



Ln 1, Col 1

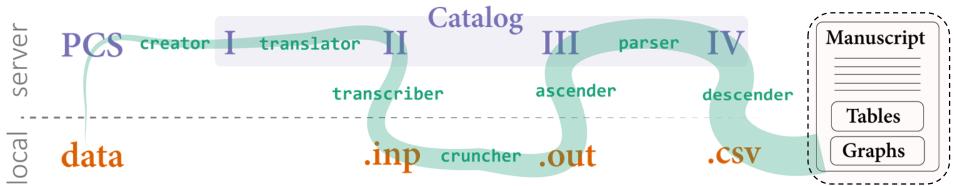
Script run on driver's local machine.
Uploads the contents of the .out files
to Part III of the Catalog.



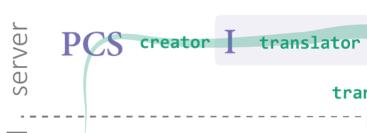
Script run on server.

PARSER extracts elements of model solution from the M*plus* output (e.g. parameter estimates, fit indices, and the convergence status).

For each model, these values are saved as separate columns in a single row of Part IV.


1	Α		В	С	D	E	F	H	- 1	J	Q	R	S	T	U	V	W	X	Υ	Z	AA
1 s	study_n	name mode	el_number	subgroup	model_type	subject_count w	vave_count	LL	aic	bic	ab_TAU_00_est	ab_TAU_00_se	ab_TAU_00_wald	ab_TAU_00_pval	ab_TAU_11_est a	ab_TAU_11_se ab	_TAU_11_wald	ab_TAU_11_pval a	b_TAU_01_est	ab_TAU_01_se	ab_TAU_01_wa
2 e	eas	b1		female	ae	580	8	-12370.4	24790.79	24899.86	-214.803	119.207	-1.802	0.072	-1.426	2.859	-0.499	0.618	-22.556	18.624	-1.2
3 e	eas	b1		female	ae	593	8	-8766.76	17583.53	17693.16	24.846	13.797	1.801	0.072	0.642	0.347	1.848	0.065	3.495	2.177	1.6
4 e	eas	b1		female	ae	572	8	-8975.66	18001.32	18110.05	69.278	19.852	3.49	0	1.023	0.37	2.766	0.006	-1.254	2.055	-0
5 e	eas	b1		female	ae	524	7	-7043.93	14137.86	14244.4	5.151	9.445	0.545	0.586	-0.282	0.357	-0.79	0.43	2.919	1.916	1.5
6 e	eas	b1		female	ae	594	8	-9357.93	18765.87	18875.54	55.35	19.105	2.897	0.004	0.815	0.456	1.786	0.074	0.303	2.457	0.1
7 e	eas	b1		female	ae	594	8	-6681.55	13413.11	13522.78	5.336	4.51	1.183	0.237	0.112	0.109	1.026	0.305	-0.201	0.628	-0.3
8 e	eas	b1		female	ae	595	8	-7094.86	14239.72	14349.44	17.044	5.765	2.956	0.003	0.322	0.185	1.742	0.081	-1.337	1.027	-1.3
9 e	eas	b1		female	ae	554	8	-8065.42	16180.84	16288.77	8.647	9.337	0.926	0.354	0.157	0.283	0.553	0.58	2.549	1.865	1.3
10 e	eas	b1		female	ae	383	8	-3871.71	7793.415	7892.116	10.378	5.741	1.808	0.071	-0.002	0.119	-0.017	0.987	0.215	0.657	0.3
11 e	eas	b1		female	ae	563	8	-8499.24	17048.48	17156.81	31.673	13.058	2.426	0.015	0.446	0.305	1.462	0.144	-2.218	1.767	-1.2
12 e	eas	b1		female	ae	592	8	-9307.2	18664.39	18773.98	69.62	20.65	3.371	0.001	1.426	0.639	2.231	0.026	0.118	3.455	0.0
13 e	eas	b1		female	aeh	150	8	-4939.77	9937.539	10024.85	-219.554	185.685	-1.182	0.237	-1.111	4.85	-0.229	0.819	-10.409	35.697	-0.2
14 e	eas	b1		female	aeh	150	8	-3582.45	7222.909	7310.217	16.88	20.942	0.806	0.42	0.837	0.945	0.886	0.376	5.52	4.478	1.7
15 e	eas	b1		female	aeh	150	8	-3709.14	7476.282	7563.591	81.433	32.4	2.513	0.012	0.817	0.561	1.456	0.145	-0.832	3.422	-0.2
16 e	eas	b1		female	aeh	130	7	-2632.36	5322.718	5405.877	15.274	13.399	1.14	0.254	-0.483	0.706	-0.684	0.494	4.214	3.568	1.1
17 e	eas	b1		female	aeh	150	8	-3714.27	7486.538	7573.847	60.856	26.394	2.306	0.021	1.19	0.811	1.467	0.142	-3.555	3.466	-1.0
18 e	eas	b1		female	aeh	150	8	-2825.3	5708.606	5795.914	9.225	7.158	1.289	0.197	0.286	0.231	1.237	0.216	-0.949	1.443	-0.6
19 e	eas	b1		female	aeh	150	8	-2910.72	5879.44	5966.749	14.142	7.545	1.874	0.061	0.362	0.232	1.56	0.119	-1.206	1.531	-0.7
20 e	eas	b1		female	aeh	150	8	-3450.76	6959.528	7046.837	10.8	13.947	0.774	0.439	0.247	0.583	0.423	0.672	1.455	3.278	2.5
21 e	eas	b1		female	aeh	72	8	-1316.58	2691.156	2757.179	2.34	3.898	0.6	0.548	0.012	0.179	0.068	0.946	0.26	0.828	0.3
							-														

Script run on driver's local machine.


Copies the entire catalog as a .csv on the driver's local machine.

This disconnected CSV allows the drivers to pursue their own analyses after the workshop.

The catalog forms the dataset for META-ANALYSIS, in which models are the new units.

MANUSCRIPTS reports and interprets the results of meta-analysis.

Catalog parser

ascender

descender

.CSV

Manuscript **Tables** Graphs

cruncher

transcriber

DYNAMIC tables store all extracted model estimates. These are useful for EXPLORATION. You can filter and sort to guide your search for patterns.

how	/ 10 ▼ ent	ries					Search:		
and	om Effects G	rowth Curve Mo	odel Solution						
	study name	process a	process b	subgroup	model type	n (r intercept 👙	r slope 🗼	r residual
				I			All	All	All
1	eas	gait	block	female	a	563	0.25(0.08),p<.01	0.30(0.27),p=.26	-0.02(0.05),p=.72
2	eas	gait	block	female	ae	563	0.22(0.08),p=.01	0.46(0.31),p=.14	-0.02(0.05),p=.73
3	eas	gait	block	female	aeh	150	0.26(0.14),p=.06	0.03(0.63),p=.96	-0.06(0.08),p=.41
4	eas	gait	block	female	aehplus	150	0.17(0.16),p=.28	0.02(0.67),p=.98	-0.07(0.08),p=.36
5	eas	gait	block	female	full	150	0.14(0.17),p=.41	0.01(0.69),p=.99	-0.07(0.08),p=.38
6	eas	gait	block	male	a	350	0.40(0.11),p<.01	0.39(0.70),p=.58	-0.05(0.07),p=.50
7	eas	gait	block	male	ae	350	0.40(0.12),p<.01	0.40(0.78),p=.61	-0.05(0.07),p=.50
8	eas	gait	block	male	aeh	72	0.28(0.30),p=.34	0.22(3.38),p=.95	0.01(0.13),p=.91
9	eas	gait	block	male	aehplus	72	0.29(0.37),p=.43	0.15(7.19),p=.98	0.01(0.15),p=.95
10	eas	gait	block	male	full	72	0.25(0.43),p=.56	0.17(4.41),p=.97	0.00(0.16),p=.98

cal

erve

PCS creator

creator | translator

Catalog

III parser

IV

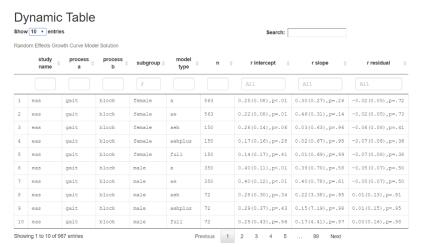
Manuscript

transcriber

ascender

descender

Tables
Graphs

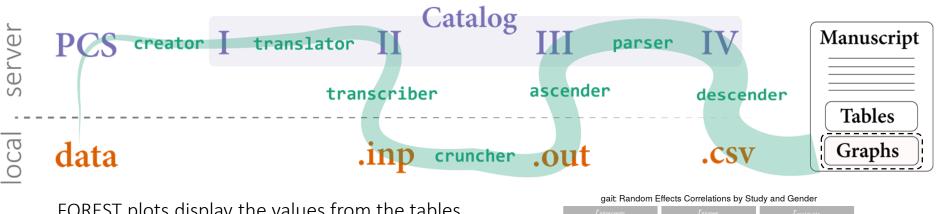

data

inp cruncher

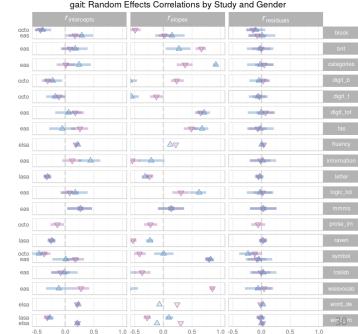
.out

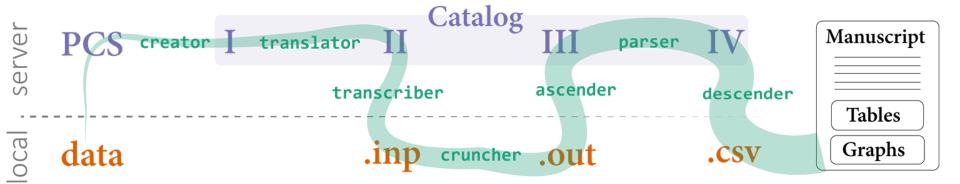
CSV

STATIC tables print targeted results. These are useful to have for DEMONSTRATION and MANUSCRIPT CONSTRUCTION.


Static Tables

The 'aehplus' model (with covariates age, education, health, and others) is shown for each combination of


- study,process, and
- gender.


eas

Proce	sse	s	Gender	n	$r_{intercepts}$	r_{slopes}	$r_{residuals}$
gait	vs	block	female	150	0.17(0.16),p=.28	0.02(0.67),p=.98	-0.07(0.08),p=.36
gait	vs	block	male	72	0.29(0.37),p=.43	0.15(7.19),p=.98	0.01(0.15),p=.95
gait	VS	bnt	female	150	0.09(0.18),p=.63	0.67(0.49),p=.18	-0.01(0.12), p=.97
gait	vs	bnt	male	72	0.17(0.38),p=.64	0.27(2.80),p=.92	-0.02(0.20),p=.91
gait	٧s	categories	female	150	0.01(0.13),p=.93	0.38(0.44),p=.39	0.05(0.11),p=.67
gait	VS	categories	male	72	0.24(0.38),p=.52	0.92(1.14),p=.42	-0.02(0.17), p=.90
gait	٧s	digit_tot	female	150	0.18(0.17),p=.29	0.65(0.40),p=.10	0.07(0.08),p=.40
gait	VS	digit_tot	male	72	0.06(0.37),p=.87	0.71(1.50),p=.63	-0.01(0.18),p=.96
gait	٧s	fas	female	150	0.26(0.14),p=.06	0.49(0.61),p=.42	-0.07(0.08),p=.40
gait	٧s	fas	male	72	-0.05(0.29),p=.86	0.68(2.69),p=.80	-0.02(0.22),p=.93
gait	vs	information	female	130	0.12(0.22),p=.58	$-0.54 \; (1.41) \; , p = .70$	-0.02(0.11), p=.87
gait	٧s	information	male	70	0.44(0.44),p=.32	-0.21(8.37),p=.98	0.02(0.19),p=.91
gait	vs	logic_tot	female	150	0.08(0.15),p=.60	0.31(0.76),p=.69	0.02(0.10),p=.83
gait	٧s	logic_tot	male	72	0.17(0.36),p=.62	0.62(2.40),p=.80	-0.03(0.19),p=.90
gait	٧s	mmms	female	72	0.27(0.63),p=.67	0.14(3.05),p=.96	0.03(0.17),p=.85
gait	vs	mmms	male	72	0.27(0.63),p=.67	0.14(3.05),p=.96	0.03(0.17),p=.85
gait	٧s	symbol	female	150	0.18(0.15),p=.24	0.79(0.61),p=.19	-0.08(0.10),p=.44
gait	vs	symbol	male	72	0.01(0.29),p=.97	0.82(1.15),p=.47	-0.05(0.22),p=.83
		4000 23 400	A	150	0.0070.101	0 07/7 (0) 00	0.01/0.101

FOREST plots display the values from the tables To optimize for useful comparisons.

Big Data, Big Analysis:

A Collaborative Modeling Framework for Multi-study Replication

Andriy V. Koval *University of Victoria*

William H. Beasley *University of Oklahoma*

Andrea Piccinin *University of Victoria*

Graciela Muniz-Terrera *University of Edinburgh*

Scott Hofer University of Victoria

www.ialsa.org

IALSA is funded through an NIH/NIA Program Project Grant (<u>P01AG043362</u>; 2013-2018) to Oregon Health & Science University

(Program Directors: <u>Scott Hofer</u>, <u>Andrea Piccinin</u>, <u>Jeffrey Kaye</u>, and <u>Diana Kuh</u>)
and previously funded by

NIH/NIA (R01AG026453; 2007-2013) and CIHR (103284; 2010-2013).

Special thanks to the drivers of the Portland 2015 workshop

Driver		Study
Andrea Zammit	EAS	Einstein Aging Study
A Annie Robitaille	ELSA	English Longitudinal Study of Aging
S <u>Chenkai Wu</u>	HRS	Health and Retirement Study
Philipp Handschuh	ILSE	Interdisciplinary Longitudinal Study of Aging
S <u>Lewina Lee</u>	NAS	Normative Aging Study
ge <u>Valerie Jarry</u>	NuAge	Quebec Longitudinal Study on Nutrition and Aging
O Marcus Praetorius	ОСТО	Octogenarian Twins
P <u>Cassandra Brown</u>	MAP	Rush Memory and Aging Project
SA <u>Deborah Finkel</u>	SATSA	Swedish Adoption Twin Study of Aging